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1 Availability

The complete set of benchmark data is available for downloaded at http://
github.com/dluntzer/shapebenchmark. These data may be of use for future
comparisons against novel or updates approaches.

2 Related Work

Soft constraints are naturally implemented in folding algorithms using bonus
energies. Since the size limit on Application Notes makes it impossible to include
a proper review of the pertinent literature in the main text, we briefly summarize
the relevant literature in this section of the Supplement.

The idea of guiding RNA folding by adding pseudo-energies to specific terms
in the recursion goes back all the way to early implementations of hard con-
straints for excluding or forcing base pairs in early versions of mfold |Zuker
et al|(1991) and the ViennaRNA Package [Hofacker et al|(1994). Although this
particular form of pseudo-energies has been replaced by hard constraints on the
recursions in more recent implementations of RNA folding algorithms, see e.g.
Mathews et al.| (2004)), the concept of pseudo-energies terms has been persistent.
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For a while, exceptions to general energy rules were handled as position-
specific bonus energies on top of a standard energy model (e.g. in the Turner
1999 model, Mathews et al.|(1999). Probably the best known example are the
bonus energies for extra-stable tetraloops.

Bonus energies, in this case derived from sequence covariation, were also used
to guide consensus folding in RNAalifold|Hofacker et al.|(2002); Bernhart et al.
(2008). Similarly, TurboFold Harmanci et al.|(2011) makes use pseudo-energies
rewarding conservation of local structure.

Soft constraints have gained a more focussed interest recently in the context
of analyzing chemical and enzymatic probing experiments. In RNAstructure
Deigan et al.| (2009); |Zarringhalam et al.| (2012); Hajdin et al.| (2013), the first
application of this type, SHAPE reactivities are converted to position-specific
stabilizing energies for unpaired bases. The same idea, albeit with different
models of bonus energies, has been used successfully also for other types of
chemical probing e.g. using DMS |Cordero et al.| (2012)) and to enymatic probing
(PARS [Kertesz et al.| (2010); (Wan et alf (2014)). A variation on this theme
has been proposed in Washietl et al| (2012). Instead of computing the bonus
energies directly from the reactivities, they are determined here as the solution
of an optimization problem that tries to balance the experimental signal and
the thermodynamic folding model. Full probabilistic models for the task are
advocated in [Eddy| (2014).

3 Metrics

3.1 Minimum free energy structure

In order to rate the quality of RNA secondary structure prediction results in
terms of prediction accuracy, the predicted minimum free energy structures are
usually compared to known reference secondary structures. Suboptimal folds,
yielding a free energy within a certain range from the minimum free energy
structure, may also contain structures with similar or even better quality than
the MFE structure. However, there is no way to rate the quality of suboptimal
folds when the reference structure is unknown, which is usually the case. As a
result, suboptimal folds can not be used in a meanigful to evaluate the quality
of a secondary structure prediction algorithm.

The correctness of the minimum free energy structure prediction is evalu-
ated by comparing the predicted base pairs against the base pairs determined
from the reference structure. In order to measure the quality, two parame-
ters are most commonly used to describe the amount of correct and wrong
base pair predictions: The Sensitivity represents the percentage of base pairs in
the reference structure, which are also found in the prediction. However, many
RNA secondary structure prediction algorithms tend to predict additional pairs,
which can not be verified with experimental methods. As a result the Positive
predictive value (PPV'), that is, the fraction of predicted base pairs that are
also present in the reference structure, is used to measure the amount of false
positives.
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3.2 Partition function

In contrast to the MFE structure, the partition function approach is used to
model the whole ensemble of structures instead of predicting just one or a few
promising secondary structure candidates. Several different parameters can be
used to describe the agreement of the predicted ensemble with the known ref-
erence structure.

The Pairing Probability Score is defined as the arithmetic mean of the pre-
dicted pairing probabilities p;; of all pairs contributing to the reference structure
S and shows the agreement of the pairing probability matrix derived from the
ensemble of all possible structures with one single reference structure:

1
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The Ensemble Diversity (d) shows the mean distance between predicted
pairs, which can be obtained from the predicted pairing probabilities. Since the
algorithms for incorporating experimental data tend to favor motifs that are in
agreement with the observed experimental data, while penalizing disagreeing
motifs, the Ensemble Diversity is used to illustrate to which extent the shift
towards the experimental data influences the variability of the secondary struc-
tures represented by the ensemble. The Ensemble Diversity of a thermodynamic
based prediction depends on the energy model and its parameters. Since the
incorporation of additional experimental information is usually done by adding
additional constraints, a decrease in the Ensemble Diversity in contrast to the
thermodynamic based prediction is expected. However, a large decrease in en-
semble diversity indicates a major shift towards probing data, thus rendering
equilibrium properties such as base pair probablilities uninformative. Since the
amount of possible pairs raises with growing sequence lengths, the Ensemble
Diversity is normalized through division by the length n of the RNA to ensure
comparability between RNAs of different size.
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The Ensemble Distance is the L'-distance between the predicted ensemble
and the reference structure:

(@(S) = > (1—pi)+ Y pij (4)
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It measures the agreement of the predicted ensemble with the accepted target
structure quantitatively. In contrast to the Pairing Probability Score, which



focuses on the predicted pairing probabilities for base pairs present in the target
structure, here the probabilities for all possible basepairs are taken into account.
Since the incorporation of experimental data into prediction algorithms tends to
prefer structures being in accordance with the determined structural features,
the ensemble distance can be used to quantify the expected shift of the whole
ensemble towards the reference structure.

It should be noted that all of the ensemble properties mentioned above can-
not be used by themselves as measures of prediction quality. They are useful,
however, to help interpret the predicted ensembles in comparison to each other.
In particular, they provide insights how strongly the ensemble of structures is
distorted by the constraints. Furthermore, the extent of the resulting measures
generally grows linearly with sequence length, and should therefore be normal-
ized by the sequence length n. This ensures compareability of predictions for
RNAs of different length.

4 Conversion of SHAPE reactivities into pseudo
free energy terms

In this section we briefly discuss the implementation of three different version
for how to include chemical probing data, in particular SHAPE reactivities, into
the ViennaRNA Package.

The [Deigan et al.| (2009) method was the first approach to incorporate
SHAPE data to direct RNA folding. It uses the following simple heuristic model
for the pseudo-energies

A Gsuapr(i) = mIn(SHAPE reactivity(i) + 1) + b.

as a function of the measured SHAPE reactivity values for a given nucleotide
7. This energy contributes to a stacked pair (Deigan et al., [2009)). A positive
slope m penalizes high reactivities in paired regions, while a negative intercept
b results in a confirmatory “bonus” free energy for correctly predicted base
pairs. Since the energy evaluation of a base pair stack involves two pairs, the
pseudo energies are added for all four contributing nucleotides. Consequently,
the energy term is applied twice for pairs inside a helix and only once for pairs
adjacent to other structures. For all other loop types the energy model remains
unchanged even when the experimental data highly disagrees with a certain
motif.

A somewhat more principled model considers nucleotide-wise experimental
data in all loop energy evaluations (Zarringhalam et al., 2012)). First, the ob-
served SHAPE reactivity of nucleotide i is converted into the probability ¢; that
position ¢ is unpaired by means of a non-linear map. Then pseudo-energies of
the form

A Gsuare(z, i) = 6 |z, — ¢,

are computed, where x; = 0 if position ¢ is unpaired and x; = 1 if 7 is paired
in a given secondary structure. The parameter [ serves as scaling factor. The
magnitude of discrepancy between prediction and experimental observation is
represented by |x; — ¢;]-

These two methods incorporate pseudo-energies even when the observed data
are consisted with an unaided secondary structure prediction. In an attempt



to avoid pseudoenergy contribution to positions that are already predicted cor-
rectly based by the thermodynamic model, Washietl et al.| (2012)) suggested to
phrase the choice of the bonus energies as an optimization problem aiming to
find a perturbation pseudo-energy vector €. The perturbation is chosen in such
a away that the discrepancy between the observed and predicted probabilities to
see position 7 unpaired, respectively, is minimized. At the same time, the per-
turbation should be as small as possible. The tradeoff between the two goals is
naturally defined by the relative uncertainties inherent in the SHAPE measure-
ments and the energy model, respectively. An appropriate error perturbation
vector thus satisfies

2 n 2
€ il€) — ¢ .
F(e) = E T’; + E 7(]3 (12 ) — min .
o =1

Here, €, is the perturbation energy for a certain structural element p and the
variances 72 and o? serve as weighting factors for the relative influence of the
structure predicted from the standard energy model compared to the experi-
mental data.

In this setting, the energy model is only adjusted when necessary. If the
thermodynamic model already yields a perfect prediction, the resulting pertur-
bation vector vanishes and the folding recursions remain unbiased. Otherwise
the perturbation vector is used to guide the folding process by adding a pseudo-
energy €; whenever nucleotide i appears unpaired in the folding recursions.

Since the pairing probabilities are derived from the whole ensemble of sec-
ondary structures, the algorithm of Washietl et al.| (2012) tends to decrease
structural diversity only slightly, which makes it applicable to RNAs with sev-
eral distinct low free energy structures. Furthermore, the inferred perturbation
energies identify sequence positions that require major adjustments of the en-
ergy model to conform with the experimental data. High perturbation energies
for just a few nucleotides are therefore indicative of posttranscriptional modi-
fications or intermolecular interactions that are not explicitly handled by the
energy model. A major drawback of this approach is its asymptotic time com-
plexity of O(n*), which renders it very expensive for long sequences. This can
be alleviated by a sampling strategy for estimating the gradient of the error
functional F' and provides a viable alternative to the exact numeric solution
that reduces the time complexity to O(n?) again.

5 Benchmark Data

The test set created by [Hajdin et al.| (2013) was used for benchmarking the
accuracy of secondary structure predictions including SHAPE data (http://
www . chem.unc.edu/rna/data-files/ShapeKnots_DATA.zip). It consists of 24
sequences with their corresponding SHAPE data sets and reference structures,
which are required to score the prediction results. The reference structures were
derived from X-ray crystallography experiments, or predicted by comparative
sequence analysis. As shown in Figure[I] the benchmark shows a high diversity
regarding the length and prediction performance of the involved RNAs.

The test set described above has been designed for benchmarking an O(n®)
algorithm that predicts secondary structures containing pseudoknots. As a re-
sult the longest RNA sequences in the test set have a length of just about 500
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Figure 1: Length and MFE prediction Sensitivity of RNAs used for bench-
marking.

nucleotides. The benchmark set also contains target structures without pseu-
doknots. The ViennaRNA Package does not support pseudoknot prediction. Of
course, this prohibits perfect predictions for benchmark structures containing
pseudoknots. On the up side, the computational cost is only O(n?), thus allow-
ing much larger RNAs, including in particular SSU and LSU ribosomal RNAs,
to be processed.

All three methods compared here depend on a set of carefully adjusted pa-
rameters. For the methods of [Deigan et al.| (2009), and |[Zarringhalam et al.
(2012) we use the latest published default parameters of m = 1.8, b = —0.6,
and B = 0.8, respectively. Since there are no default parameters available for
the stochastic version of the Washietl et al.| (2012) method, we performed an
exhaustive evaluation of its parameter space, see Figure 2l From this analysis,
we selected new default parameters which will be described below. The result of
the corresponding leave-one-out cross validation is shown in Figure 3| It should
be noted, that the above mentioned parameters for the Deigan et al.| (2009)
method were already trained on a majority of the 24 reference RNAs from our
benchmark set in another study Hajdin et al.| (2013]).

Our implementation of the method by Washietl et al.| (2012) in the program
RNApvmin defaults to an estimation of the gradient by drawing 1000 sample
structures from the Boltzmann ensemble. This not only considerably speeds
up the optimization routines, but also enables their application to rugged land-
scapes where an exact gradient approach could easily trap the optimization
process in a local minimum. Based on the data from an exhaustive param-
eter space evaluation, we selected the following default combination for this
approach: 7/0 = 1.0, minimizer tolerance €,, = 0.001, initial step size of the
minimizer method s,, = 0.01.
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Figure 2: Parameter space evaluation for the method of [Washietl et al| (2012).
Plotted are the mean positive predictive values (PPV) for the entire benchmark
data set using different parameter settings. For the sake of clarity, only three
different values for the minimizer tolerance €,,, namely 0.1, 0.01, and 0.001, are
depicted, while for each of them a large range of 7/0 -ratios is used. The polygon
surrounding each line of mean values indicates the standard deviation of PPVs
within the entire set of predictions for the corresponding parameter setting. The
dashed, purple, vertical line highlights the 7/0 -ratio used as default value for
RNApvmin.

The benchmark results for all three methods that correspond to their default
parameters are listed in Table Estimation of the distribution of PPVs are
shown in terms of 95% confidence intervals that we derive from a bootstrapping
analysis with 1000 iterations, see Fig. [
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Figure 3: Leave-one-out analysis for the method of Washietl et al[(2012). Shown
are Positive Predictive Values (PPV), left plot, and Sensitivity (TPR), right
plot. Mean PPV for the three different tested minimizer tolerance of 0.001,
0.01, and 0.1 are 0.726, 0.700, and 0,739 with standard deviations of 0.209,
0.226, and 0.216, respectively. The individual PPVs have been weighted by
their contribution of predicted base pairs to the total number of predicted pairs

in the entire data set.
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Figure 4: Confidence interval estimation for the Positive Predictive Values
(PPV). To assess the distribution of the performance benchmarks sample mean,
we performed a bootstrapping analysis using 1000 samples. From this resam-
pling, we derive 95% confidence intervals of the mean PPV. For comparison we
added performance benchmark results for three different parameter sets of the
Deigan et al| (2009) method, (m = 2.6 b = —0.8), (m = 1.8, b = —0.6), and
(m = 3.0, b = —0.6), taken from the original publication Deigan et al.| (2009)),
from Hajdin et al| (2013), and [Low et al| (2014)), respectively. The second pa-
rameter set corresponds to the default parameters we use in our implementation.
Although there is a large overlap between the different methods, the approach
of [Deigan et al| (2009) shows the best average performance on our benchmark
set.

6 Theophylline sensing riboswitch

As an additional, particular example for comparing the three methods we inves-
tigated the artificially designed RNA switch theo-P-is10 described by
(2012). This RNA consists of a theophylline sensing aptamer part followed by
a ncRNA expression platform. The switching principle follows a regular ON-
switch behavior, where under sufficiently high concentrations of theophylline,
the aptamer part of the structure is thermodynamically favored, and the down-
stream located ncRNA part of the sequence folds into its active state. On the
other hand, in the absence of theophylline, the expression platform misfolds into
an inactive state.

In the original design theo-P-is10 forms a pseudoknot interaction between
the aptamer stem and the expression platform in the inactive state. However, by
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using RNAfold we explicitly exclude pseudoknots, which is also true for almost
all other secondary structure prediction programs available. Nevertheless, the
data that comes with the work of |Qi et al| (2012)) provides a rich source of
interesting SHAPE probing data, since it consists of normalized reactivities
from two experiments: (i) the RNA folds in theophylline free solution, and (ii)
the RNA folds in the presence of 0.5 mM theophylline, respectively. Since the
designed pseudoknot is only present in the inactive state of the RNA switch, i.e.
in theophylline-free solution, we do not emphasize too much on the correctness
of the structure prediction in this case.

To compare the different variants of guided RNA secondary structure predic-
tion through SHAPE reactivity data incorporation for theo-P-is10, we computed
the ground state structures, and base pair probabilities for the two correspond-
ing experimental data sets. Instead of using two dotplots for comparison, we
create differential RNAbow plots (Aalberts and Jannen, 2013)) to visualize the
difference in base pair probability predictions. Here, a differential RNAbow plot
consists of two sets of arcs located on the upper and lower half of the horizon-
tally aligned nucleotide sequence, showing the predictions for both experiments,
respectively. The strength/width of the arcs represents the pairing probability
(thicker lines mean higher probability), whereas arcs are colored with an inten-
sity corresponding to the absolute value of difference in predictions (red in the
upper half, blue in the lower half) only, if pairing probability is higher when
compared to the other experiment. Otherwise, arcs are drawn in gray, indicating
lower probability compared to the other experiment. For better visualization
we restrict the RNAbow plots to pairing probabilities of 0.1 and above.

Figure[5|outlines the two ground state structures of the designed RNA switch
together with their corresponding pairing probabilities in form of a bowplot.
Results of the predictions using the method of [Deigan et al.| (2009) with default
parameters, the parameters used in|Qi et al.|(2012), the method of |Zarringhalam
et al.| (2012) with default parameters, and the method of [Washietl et al.|(2012]),
are shown in Figures [6] [7} B and [0 respectively. It can be easily seen that
the method of Deigan et al.| (2009)) using default parameters clearly misses the
proposed ground state structures and essentially yields results as obtained by
RNAfold without incorporation of SHAPE reactivities. On the other hand, using
the two parameters m = 3.4, and b = —0.5, both SHAPE reactivity data sets
yield high probabilities for the aptamer pocket and the functional ncRNA part,
although only in presence of theophylline the aptamer pocket is fully formed.
Using the method of Zarringhalam et al.| (2012) both predicted ground state
structures again correspond to the active conformation of the designed RNA
switch. However, the proposed pseudoknot interaction between the two hairpin
loops of the inactive state becomes visible in the base pair plot. This effect is
even more pronounced when using the method of [Washietl et al.| (2012)). Here,
the pairing probabilities for the pseudoknot interaction are much higher in the
absence of theophylline, whereas the probabilities of the base pairs involved
in the formation of the aptamer pocket and the ncRNA part are increased in
the presence of theophylline. Nevertheless, both ground state structures are
virtually identical and represent the active conformation.

In contrast to the above methods, the implementation of so-called soft-
constraints in the ViennaRNA Package 2.2 (published elsewhere) also allows for
a direct inclusion of binding free energies of the ligand to the aptamer pocket.
For this purpose, the ensemble of structures is modified such that all structures

11



that exhibit the aptamer pocket receive an additional stabilizing free energy of
E; = —9.22 kcal/mol, according to the dissociation constant of Ky = 0.32uM
taken from |Jenison et al|(1994)). The resulting constrained secondary structure
prediction is shown in Figure [I0] Here, the shift towards the functional ligand
binding state of the RNA switch under presence of theophylline is clearly visible
in the base pair probabilities.

12
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SHAPE reactivity ‘ Probability for being unpaired

<0.25 | 0.00 - 0.35
0.25-0.30 | 0.35-0.55
0.30 - 0.70 | 0.55-0.85

>0.70 | 0.85 - 1.00

Table 2: Linear mapping classes used to convert SHAPE reactivities to proba-
bilities for being unpaired according to Zarringhalam et al|(2012).

7 Mapping SHAPE reactivities to pairing prob-
abilities

While the approach of Deigan et al.| (2009) directly converts SHAPE reactivities
to pseudo energies, the methods of [Zarringhalam et al| (2012) and [Washiet]
et al| (2012) both require experimentally determined pairing probabilities as
input data. However, converting raw reactivity values to pairing probabilities is
not a trivial task and both approaches use different methods to calculate pairing
probabilities based on given SHAPE reactivities. While Washietl et al. used a
simple cutoff approach to distinguish between paired and unpaired positions,
Zarringhalam et al. used a more sophisticated method where the normalization
is carried out in a stepwise linear fashion (See table [2).

In this benchmark a common method was used to compute the required
pairing probabilities based on the experimentally determined SHAPE reactiv-
ities. The application RNAplfold was used to predict the pairing probabilities
for all sequences of the benchmark. The predicted pairing probabilities of all
nucleotides were then compared with the determined SHAPE reactivities. The
dataset containing about 4500 observations showed a significant correlation be-
tween the logarithm of the SHAPE reactivity and the probability for a certain
nucleotide to be unpaired. However, as shown in figure the experimental
signal shows a high variation and high reactivities can also be observed for
paired nucleotides, and wice versa. Nevertheless, a linear model is suitable for
converting the logarithm of the SHAPE reactivity to the probability for being
unpaired. The best fit is

q= 2(2.29 + log(SHAPE reactivity)) (5)

Since the equation above may also lead values of ¢ below 0 or larger than 1, all
results exceeding those limits are replaced by 0 or 1, respectively.

8 Running time

The impact of the incorporation of additional soft constraints onto the required
amount of computational time was benchmarked for the whole dataset using a
workstation (Intel Core 2 Quad 2.83 GHz, GCC 4.8.2). The running time for
the folding recursion are reported as averages over 10 runs. As shown in figure
the incorporation of additional constraints results in a slight increase of the
required computational time. However, the effect is less pronounced for the
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log(SHAPE reactivity)
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predicted probability for being unpaired

Figure 11: Relation of measured SHAPE reactivities to predicted probabilities
for being unpaired

approach of Deigan et al., which may be explained by the fact that in contrast
to the other approaches, which apply pseudo energies for every paired/unpaired
nucleotide, the free energy is only adapted when evaluating stacked pairs.

The overall running time for the prediction according to Washietl et al. can
be separated into two phases. First, a perturbation vector is calculated by
numerically minimizing an objective function. This step requires most of the
computational resources since the exact evaluation of the gradient at various
points of the minimization algorithm scales at O(N?). However, the evaluation
can be done much faster when the gradient is estimated from a number of sam-
pled sequences. Second, the calculated perturbation vector is used to constrain
the secondary structure prediction.
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Folding runtime Perturbation vector calculation runtime
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Figure 12: Running time for predicting the MFE structure and the partition
function using various approaches and running time required to calculate a
perturbation vector with exact gradient evaluation
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PPV improvement over default MFE prediction

5S rRNA, E. coli

5’ domain of 16S rRNA, E. coli

5’ domain of 16S rRNA, H. volcanii
5’ domain of 23S rRNA, E. coli
Adenine riboswitch, V. vulnificus
Fluoride riboswitch, P. syringae*
Group Il intron, O. iheyensis*
Group | Intron, T. thermophila*
Group | intron, Azoarcus sp.*
HIV-1 5’ pseudoknot domain*
Hepatitis C virus IRES domain*
Lysine riboswitch, T. maritime*
M-Box riboswitch, B. subtilis
P546 domain, bi3 group | intron
Pre-Q1 riboswitch, B. subtilis*

RNase P, B. subtilis*

SAM I rik h, T. 15is

SARS corona virus pseudoknot*
Signal recognition particle RNA, human
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Figure 13: Change of the PPV of the minimum free energy structure due to
constrained folding compared to unconstrained folding. Reference structures
that contain pseudoknots are marked by an asterisk and light-red background.
The poor performance of the Washietl et al|(2012) method in the case of E.coli
TPP riboswitch is caused by an inconsistency between SHAPE reactivity and
proposed reference structure.
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